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A B S T R A C T

There has been extensive research on building energy saving (BES), which aims to reduce energy consumption
inside buildings. One of the key solutions for energy saving in buildings is to reduce energy consumption
in areas that are not occupied by inhabitants. However, effective monitoring of occupants for energy-saving
purposes can be challenging due to unpredictable variations in the indoor environment, such as variations in
space size, furniture arrangement, the nature of occupants’ activities (e.g., varied intensities and instances), and
penetration losses of walls. Unfortunately, the existing solutions for occupancy monitoring in smart buildings,
such as PIR sensors, 𝐶𝑂2 sensors, and cameras, etc., are expensive, require excessive maintenance, and are
not adaptable to the complex variations in indoor environments. This paper introduces WiSOM , for occupancy
detection that utilizes the channel state information (CSI), of commodity WiFi. The method is self-adaptive and
designed to handle complex variations in indoor environments. We conducted a thorough analysis of WiSOM
and evaluated it under various indoor conditions, including the impact of multipath effects, the detection of
different intensities and instances of activities of daily living (ADL), and the impact of wall absorption in a
real-home scenario. Our evaluation demonstrated an average detection rate of 98.25% for multipath effects,
96.5% and 98.1% for different intensities and instances of ADL, and 94.4% for wall absorption. Additionally,
we assessed WiSOM ’s resilience to temporal variation in the CSI and achieved a false alarm rate of less than
2%. In comparison to recent baselines, WiSOM outperformed, achieving up to a 21% improvement in detection
rate within real-house scenarios.
1. Introduction

The world’s population is tremendously increasing and it is pro-
jected that by the year 2100 the expected population would be 10.4
billion [1]. Such a rapid growth in population would introduce two
major concerns for the humans, namely, the shortage of land and run-
out energy resources. The land demand can be coped with the vertical
construction (i.e., buildings) to accommodate a higher population den-
sity. However, the energy depletion is a serious issue, and the energy
resources must be efficiently utilized to extend its run-out period.

The existing urbanized regions of the world have already adopted
living in the buildings. In order to enhance the inhabitants living
standard, modern buildings are installed with heating, ventilation, and
air conditioning (HVAC) systems, lighting systems, and systems for sup-
plying hot water, etc. Because of these living comfort services, the build-
ings consume the highest proportion of the total energy (i.e., around
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40%) [2]. Unfortunately, building comfort services are inefficiently
administered, exacerbating the waste of energy resources [3]. For
instance, maintaining a thermal comfort level for a vacant apartment
or office potentially waste a considerable amount of energy resources.
According to a report by MIT, around 30% of the energy consumed by
buildings goes wasted [4].

To prevent the waste of energy in smart buildings, several ap-
proaches have been introduced for occupancy monitoring. These ap-
proaches ensure the provision of adequate energy only to those areas
where the occupants are present, whilst limiting the usage of energy
in the unoccupied areas. The effective implementation of occupancy
monitoring not only enhances the energy efficiency of individual build-
ings but also contributes to a substantial improvement in the energy
flexibility of entire building clusters [5]. Recently, a couple of systems
have been introduced in smart buildings for occupancy monitoring,
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Nomenclature

CO2 Carbon dioxide
ADL Activities of Daily Living
AOI Area of Interest
AP Access Point
BES Building Energy Saving
BiLSTM Bidirectional Long Short-Term Memory
CNN Convolutional Neural Network
CSI Channel State Information
DR Demand Response
DWT Discrete Wavelet Transform
EV Electric Vehicles
GUI Graphical User Interface
HVAC Heating, Ventilation, and Air Conditioning
IoT Internet of Things
IP Internet Protocol
LoS Line-of-Sight
MAD Median Absolute Difference
MIMO Multiple Input, Multiple Output
NLoS Non-Line-of-Sight
OFDM Orthogonal Frequency Division Multiplex-

ing
PCA Principal Component Analysis
PIR Passive infrared
RPi Raspberry Pi
RSSI Received Signal Strength Indicator
SVM Support Vector Machine
TV Television
UDP User Datagram Protocol
WiSOM WiFi System for Occupancy Monitoring
WLAN Wireless Local Area Network
WSN Wireless Sensor Networks

namely Passive infrared (PIR) sensors, environmental sensors (e.g., CO2,
umidity, and temperature sensor), cameras, and WiFi. The Passive
nfrared (PIR) sensor is a cost-effective and power-efficient solution
or occupancy monitoring in small indoor environments [6,7], but
t becomes inefficient in large spaces [8]. Moreover, its sensitivity
educes with the increase in temperature [9], and it cannot detect
ndividuals in Non-Line-of-Sight (NLoS) conditions [10]. Environmental
ensors such as CO2 sensors are more robust for monitoring large
umbers of occupants [11,12], but they cause delays in reporting the
resence of a single occupant [13]. Additionally, these sensors have
higher maintenance cost [14]. The surveillance camera has also

een used for occupancy monitoring, and has been effective for finding
he occupants [15–18]. However, camera-based solutions raise privacy
oncerns and is not feasible for monitoring the interior of private spaces
uch as homes or offices.

More recently, the widespread use of WiFi infrastructure in com-
ercial and residential buildings has made the WiFi-based sensing

pproaches more popular for occupancy monitoring [19–24]. The main
dvantage of WiFi-based occupancy sensing techniques is their ability
o be deployed to any WiFi-enabled IoT device with a few modifications
o its WLAN driver, which means they do not require a dedicated de-
ice. Additionally, they passively measure occupancy, meaning they do
ot require active participation from the occupants and do not violate
rivacy concerns. In this paper,1 we introduce a system supported by

1 As a continuation of my previous work, I would like to acknowledge
hat I presented the initial idea in my conference paper titled WiFi-enabled
2

ny WiFi-enabled IoT device referred to asWiSOM2 to smartly sense the
ccupancy of the area of interest (AOI). However, unlike the existing
iFi-based occupant sensing technique which underestimates the com-

lex indoor settings of the smart spaces (e.g.,smart buildings or smart
omes), such as variation in size of the AOI, scatters (e.g., furniture)
rrangement, intensities of occupant activities, random instances of
ctivities of daily living (ADL), temporal variation in the CSI, and
ultiple wall occlusion; WiSOM is self-adoptive to all these complex

ariations in the target environment. We resolved these challenges as
ollows:

ariations in the indoor environment: The indoor space has varied
izes and furniture arrangements. These factors cause different multi-
ath effects which results in false occupancy results. Thus supervised
achine learning methods could not work effectively in such settings.
o handle this, we introduce an unsupervised machine leaning method
ased on the DBSCAN algorithm [26] and in conjunction with the
ontrol chart method [27]. We adopt a self-adaptive feature to the
BSCAN method, which automatically adjusts its threshold to the
ariations in indoor environments.

andomness of the occupants’ activity: Understanding the behav-
ors of occupants in buildings is a challenging task as the intensities and
nstances of their ADL are inherently unpredictable and random [28,
9]. The intensity refers to how vigorously an activity has been
erformed, and the instance refers to when the user’s behavior was
edentary and when it was dynamic. To address this challenge, we
everage the kneedle method [30] for automatically finding the bifur-
ation point between the static and dynamic instances. This enables
he adaptation of DBSCAN to activities of any intensity. In addition to
hat, we introduce a method for fine-tuning the estimated parameter
determined by the kneedle) to discriminate the individual’s ADL of
ny instance accurately.

emporal variations in CSI: The CSI data experience variations over
ime even if there is no activity in the AOI [31]. Such variations are due
o jitter caused by surrounding traffic, building materials, and frequent
mall changes in the indoor environment. To tackle this, our model first
dentifies the static cluster, and then periodically sets the threshold of
he control chart method. Thus, regardless of these temporal variations
n the CSI, WiSOM accurately detects the presence of an occupant.

ccupant behind walls: Detecting the activity of an individual behind
ingle or multiple walls (i.e., in NLoS) using CSI is a challenging task
ue to the complex propagation environment and attenuation of the
ireless signals. To deal with this, we apply a filter based on wavelet
nalysis, i.e., discrete wavelet transform (DWT) [32,33]. This filter
itigates the noises caused by the complex propagation environment

nd preserves the Doppler frequencies that correspond to the ADL.
Based on our in-depth review presented in Section 2, focusing

n both WiFi and sensor-based technologies, we discover that most
xisting solutions are geared towards coarse-grained occupant detec-
ion, including zone-based, RSSI-based, and scenario-specific CSI-based
ethods. In addition, there is a significant gap in developing self-

daptive systems that are capable of effectively detecting occupants,
n spite of the complex variations found in indoor settings. To address
hese gaps, our paper makes three key contributions:

• We adopted CSI to overcome the limitations of existing occupancy
monitoring solutions (e.g., PIR, CO2 sensor etc..) used in com-
plex indoor environments with unforeseeable variables such as
Non-Line-of-Sight scenarios and variable room sizes. To enable
CSI to function effectively in complex indoor environments, we

Occupancy Monitoring in Smart Buildings with a Self-Adaptive Mechanism, which
was published in ‘‘ACM SAC in March 2023’’ [25].

2 WiSOM stands for WiFi System for Occupancy Monitoring.
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conducted a process of sanitization in which we eliminated CSI’s
noisy subcarriers. In-band noises were subsequently filtered using
discrete wavelet analysis. By then extracting the first principal
component feature from the amplitude term of the filtered CSI,
the occupancy (or non-occupancy) states present in the CSI were
stabilized.

• To achieve the system’s self-adaptability, first, we developed a
novel technique for auto-estimating and fine-tuning the DBSCAN
parameters. After that, we use a synergistic model that incor-
porates the auto-tuned DBSCAN and control chart technique;
wherein the autotuned DBSCAN operates in batch mode and
updates the control chart threshold in accordance with the en-
vironmental variations.

• To evaluate WiSOM ’s performance in real-life scenarios, we build
a realistic testbed based on raspberry pi-3 (RPi 3). We deliver
the results for the aforementioned challenges, namely, rooms of
different sizes with uncontrolled furniture arrangement to exam-
ine WiSOM ’s reliability in multipath rich environments, detecting
ADL with diverse intensities and instances, robustness to CSI’s
temporal variation over different periods, and detecting activity
behind wall(s).

. Related work

Recently, WiFi based occupancy monitoring in smart buildings has
ained considerable popularity owing to ubiquitous wireless networks
nd massively available WiFi-enabled IoT. In the following, recent
olutions for building’s occupancy monitoring has been discussed. They
re broadly categorized into two parts, as detailed below

.1. Non-WiFi occupancy detection solutions

These solutions for occupancy detection include the utilization of
ameras, dedicated sensors, or a hybrid combination thereof. We dis-
uss them in detail as follows:

amera-based occupancy monitoring. Such solutions utilize cameras
for AOI monitoring and employs computer vision for occupant detec-
tion. Cui et al. employed a camera based approach consisting of their
three-module [15]: Module A for occupancy detection using a camera,
Module B to manage outdoor air intake based on detected occupants,
and Module C for efficient airflow distribution to ensure suboptimal
thermal comfort. Another work proposed by Saffari et al.. introduced
a novel approach harnessing energy from ambient light for a battery-
free camera system [16]. They utilized YOLOv5 [34], a computer vision
algorithm, for occupancy detection across various areas within the
building, showcasing the versatility of their energy-efficient occupancy
detection solution. Similarly, Hu et al. introduced a building occupancy
detection system using CCTV cameras, employing a deep-learning ap-
proach. This method accurately predicts both the number of occupants
and their respective locations within the building [17].

Dedicated sensors based Occupancy monitoring. In this category,
dedicated sensors such as temperature sensors, infrared sensors etc., are
used to detect the occupancy. Jin et al. utilized CO2 sensor, and em-
ploys a mathematical model called Sensing by Proxy (SbP) paradigm,
which is using partial and ordinary differential equations. This ap-
proach enables quick responses to changes in occupancy, facilitating
real-time control of indoor environments [11]. Similarly, Cali et al. pro-
pose an occupancy detection system based on CO2 concentration [12],
utilizing a mass balance equation to compare occupant-generated CO2
contributions with the known CO2 profile of the room. Their evaluation
includes scenarios with and without air conditioning in the area of
interest (AOI). Dodier et al. utilize PIR sensors for real-time occupancy
3

data collection and streaming those information to a server every
second. They leverage belief network analysis, which makes real-time
inferences about occupancy patterns in indoor environments [7].

Occupancy monitoring with multimodal input. Mahmud et al. em-
ploy a system with wireless sensors and cameras for occupancy detec-
tion [35]. The system updates occupant count and locations, transmit-
ting this information wirelessly to a central server equipped with a GUI,
which then makes decisions to adjust air conditioner set points and
control lights based on occupancy. Han et al. presented an occupancy
detection method based on the data acquired from six different sensors,
including, passive infra-red (PIR) sensors, Carbon Dioxide (CO2) con-
centration sensors, and relative humidity (RH) sensors. They employed
Autoregressive Hidden Markov Model (ARHMM) and achieved a detec-
tion accuracy of approximately 80% [36]. Piselli et al. used Wireless
Sensor Network (WSN) system to monitor occupants in five office
rooms, recording parameters such as air temperature, illuminance,
and appliance usage [29]. Based on the data acquired from WSN a
predictive model for occupancy patterns was developed.

To sum up, non-WiFi occupancy detection solutions come with cer-
tain limitations. While camera-based solutions provide higher accuracy,
their adoption within homes and offices is hindered by privacy concerns
among users. Dedicated sensors also face challenges, with sensitivity
affected by the distance between sensors and occupants [12]. Addition-
ally, solutions using multiple sensors encounter practical issues, such
as high computational demands and data transportation challenges to
predict occupancy states on the server.

2.2. WiFi-based occupancy detection solutions

We categorize WiFi-based occupancy detection solutions into three
main parts: utilizing WiFi association logs for occupancy detection,
monitoring changes in WiFi signal strength (RSSI), and monitoring
changes in CSI resulting from the occupant’s motion in the AOI. The
details are discussed below.

WiFi association based occupancy monitoring: There are numerous
solutions where the occupancy is detected based on the knowledge of
users association to the WiFi installed in the AOI. Balaji et al. proposed
a system called Sentinel [37], where on the user side, they installed
an application on their phone for consistently sending packets to the
access point (AP). On the AP side, the received packets were identified
via WiFi logs. The authors of Sentinel partitioned the building in zone
of detection, where each zone was corresponding to the coverage area
of a particular AP. The occupancy in zone of detection was anticipated
via user-AP association logs [37]. Another similar work called WiFiMon
has been proposed by Cecchet et al. The authors predict the occupancy
pattern in buildings equipped with enterprise wireless networks by
leveraging the WiFi logs of packets exchange between the user and
AP [38]. Similarly, Trevidi et al. proposed isschedule system for leverag-
ing the user-AP association information for training a machine learning
model and based on that deriving the HVAC schedule. All the afore-
mentioned system requires the installation of an application on the user
side and maintaining the WiFi logs on the analytic platform. Moreover,
such occupancy localization information are coarse-grained and not
very accurate (i.e., WiFi provides the associated user information who
could be in any possible room in that area).

RSSI-based passive sensing: Another popular metric used for occu-
pancy detection is the WiFi’s received signal strength indicator (RSSI),
which in particular is the power measurement between the transmitter
and receiver pair. Depatla et al. exploited the RSSI for occupancy
detection by leveraging the blocking of line-of-sight (LoS) between the
WiFi transmitter and receiver pair, and the scattering effect from people
reflection [39]. The authors used these two pieces of information,
and based on the level of RSSI degradation, their framework predicted
the occupancy. Longo et al. also leveraged the RSSI information for

estimating the occupancy in the AOI [40]. The authors transmitted
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the occupancy related data from the AOI to their web-based platform
which incorporates a trained supervised machine learning model. Based
on testing the occupancy data (i.e., RSSI), their platform predicted the
presence of occupants. Similarly, Xu et al. profiled the environment
by fingerprinting method, and predicted the location of the occupant
based on multiple RSSI transmitters and receivers [41]. Retrieving and
processing RSSI measurements are straightforward and computation-
ally efficient for both localization and occupancy detection. However,
the RSSI is susceptible to background noises and temporal variations,
making it less reliable. Additionally, it is highly affected by multipath
effects [42]. Therefore, approaches based on RSS measurements for
detecting occupancy are prone to higher errors [43].

CSI-based passive sensing: The CSI, as opposed to the RSSI, character-
izes small-scale multipath fading, making it a more precise descriptor
of the wireless channel. Thus, the fine grained information contained
in the CSI enables accurate estimation of occupants in the AOI. The
CSI-based endeavors for occupancy detection in smart buildings are
discussed below:

Yang et al. proposed cloud based occupancy monitoring platform.
The authors transmitted the collected CSI data to the cloud server
via MQ telemetry transport protocols. The cloud server incorporates
a machine learning algorithm, which forecasts the state of occupancy
based on the CSI data [21]. Soltanaghaei et al. proposed an occupancy
detection solution based on analyzing the multipath reflections of the
CSI. They treat each multipath a separate sensor. In doing so, they are
able to distinguish the highly fluctuating multipath that corresponds to
the reflection from the moving occupants in the target area [22]. Lastly,
in some works the algorithms for detecting the occupancy compare the
shape similarity between nearby time series CSI data [19,20].

In summary, the existing CSI based solutions provide extensive
details on how to detect the occupants in a particular controlled envi-
ronment. However, they lacks the focus on uncontrolled environmental
factors such as changing the size and scatters in the target envi-
ronment, varying the intensity and instances of ADL, considering the
temporal variations in CSI, and multiple wall occlusion (i.e., occupants
in non-line-of-sight). These factors highly affect the performance of the
occupancy detector. In this work, we leverage the CSI of commodity
WiFi signals and propose a self-adaptive occupancy detection system
to such complex variations in indoor environments.

3. Methodology

When a WiFi signal travels from a transmitter to a receiver, it can be
affected by various factors, including reflections, refraction, and scat-
tering. These effects cause the signal to take multiple paths and arrive
at the receiver at different times, resulting in a phenomenon called mul-
tipath. When the signal is degraded due to multipath, the CSI retains
information about the degree to which the channel was degraded [44].
These details are given at the granularity of the orthogonal frequency-
division multiplexing (OFDM) subcarriers. The presence of occupants in
the AOI additionally disrupts the WiFi propagation channel, resulting
in larger variations in CSI. Exploiting this phenomenon can assist us
in determining the movement of occupants in that area. However,
raw CSI data cannot be directly used for occupancy detection due to
the presence of short spikes, zero bins, and noise. Thus, the raw CSI
data must be cleaned and preprocessed beforehand. Subsequently, we
elaborate on the particulars of our methodology, which are illustrated
in Fig. 1.

3.1. CSI sanitization

First, the CSI data for the AOI is collected and the noisy subcarriers
are removed as follows.
4

Fig. 1. High-level overview of the occupancy detection methodology.

Removal of noisy subcarriers
The number of subcarriers in the received frames depends on the

channel bandwidth. Specifically, frames with bandwidth of 20 MHz,
40 MHz, 80 MHz, and 160 MHz, respectively, have 64, 114, 242, and
484 subcarriers [45]. There are three different CSI subcarrier types
present inside the data frames: the pilot subcarriers, used to monitor
variations in frequency, amplitude, and phase; the data subcarriers,
used to transport the modulated data; and the DC (or null) subcarriers
act as a guard carrier and do not carry any information, but are
instead used to prevent interference with neighboring channels. As an
example, in the 802.11n/ac standard with a channel bandwidth of 20
MHz, there are 64 CSI subcarriers in total, where 52 subcarriers are
allocated for data, 8 for pilot subcarriers, and the remaining 4 for
DC/null subcarriers that act as guard carriers to avoid interference
with neighboring channels. The DC and pilot subcarriers have asym-
metric shapes as opposed to data subcarriers. The DC subcarriers create
zero bins and the pilot subcarriers form a spiky pattern, which cause
errors in the occupancy monitoring. To alleviate this problem, these
subcarriers ought to be discarded on the basis of their indices [46]. For
instance, in the 802.11n/ac standard with a channel bandwidth of 20
MHz, the subcarriers are indexed from −32 to 32. The pilot subcarriers
are identified by indices -28, -21, -14, -7, 7, 14, 21, and 28, while the
DC/null subcarriers have an index range of −2 to 2. For occupancy
detection, to retain only the data subcarriers in the CSI and remove
the pilots and DC/null subcarriers, one can simply discard the pilot
subcarriers (i.e., indices -28, -21, -14, -7, 7, 14, 21, and 28), as well
as DC/null subcarriers (i.e., indices −2 to 2).3 This process ensures
that only the relevant data subcarriers are used for accurate occupancy
detection.

3 It is important to keep in mind that the index positions may vary for
different channel widths, as elaborated in [46].
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3.2. Filtering and feature extraction

CSI filtering
The indoor environment is subject to various unpredictable factors

such as wall absorption (or penetration losses), room size, and the
presence of obstacles, which can significantly increase the noise in the
CSI data and result in errors during occupancy detection. To reduce
the noise, filters in frequency and time domain such as the Butterworth
filter and Median filter, respectively, are typically employed. However,
these filters present some limitations. For instance, if a filter in the
frequency domain such as the Butterworth filter is employed, noise
leakage may occur from the stop-band into the pass-band due to the
inherent delay of the fall-off feature [47]. Similarly, when a filter in the
time domain such as the Median filter is used, significant distortion is
caused to the CSI due to replacement of clean data (error-free CSI band)
with noisy data (noisy CSI band) [48]. To overcome these limitations,
we utilize the DWT as an in-band noise removal filter. The DWT
decomposes the input signal into a multitude of wavelet basis functions.
This transformation in the wavelet domain allows the signal to be
represented in terms of coefficients of a time series. It is worth noting
that the DWT parameters for noise removal such as cut-off threshold,
wavelet type, and sampling rate should be carefully selected in order
to maintain the necessary information on the occupant’s activity in
the CSI data. To ensure that the noise is removed from the in-band
CSI data while preserving the occupants’ daily activity information,
we utilize the following Doppler frequency 𝑓𝑑 formula to compute the
cutoff threshold:

𝑓𝑑 = 2𝑣
𝐶

× 𝑓𝑐 (1)

where 𝑣 is the user velocity, 𝐶 is the speed of light (i.e., 3 × 108 m∕s),
and 𝑓𝑐 is the carrier frequency of the commodity WiFi (e.g., 2.4 GHz).
Thus the 𝑓𝑑 is 24 Hz and 80 Hz for walking (i.e., 1.5 m/s) and running
(i.e., 5 m/s) respectively [49]. Using the maximum attainable Doppler
frequency (i.e., 80 Hz) as the cutoff threshold for DWT would retain
all fluctuation in the CSI data below this frequency and remove noise
levels above it [50].

Feature extraction
the data frame consists of multiple CSI subcarriers, represented as

follows

𝑯 = [𝐻1,𝐻2,… ,𝐻𝑁 ]𝑇 for 𝑖 = 1, 2,… , 𝑁, (2)

where 𝐻𝑖 and 𝑁 denote the individual 𝑖th subcarrier and total number
of subcarriers, respectively. The 𝑖th subcarrier is defined as

𝐻𝑖 = |𝐻𝑖|𝑒
𝑗 sin{∠𝐻𝑖}, (3)

where in particular |𝐻𝑖| is the magnitude term and ∠𝐻𝑖 is the phase
responses of the subcarrier. In this work, we exploit the variation in
the magnitude of the CSI’s subcarrier when the communication link is
obstructed by the user in the AOI. To do so, we extract the amplitude
feature from each CSI subcarrier and then reduce the dimensionality of
the CSI data in the sliding window W by applying Principal Component
Analysis (PCA). It should be noted that the sliding window contains
multiple data frames, and each data frame has several CSI subcarriers.
The final feature of the CSI data is obtained by computing the first
principal component, which is the maximum Eigen value of the Eigen
vectors obtained from the correlation matrix of CSI in W.

The first principal component is an effective feature for occupancy
monitoring because it captures the maximum variation in CSI data
caused by motion. When there are no occupants in the AOI, the value
of the first principal component is close to 1. However, in the presence
of occupants performing any ADL in the AOI, its value changes dramat-
ically between 0 and 1. As an example, we deliver a demonstration of
occupancy detection with our feature value in Fig. 2. For this particular
example, the CSI data was collected for 25 min, during which the
occupant was present in the target area from 5 to 20 min.
5

Fig. 2. Example of CSI feature with/without occupancy.

3.3. Occupancy detection method

The complex variation in indoor environments (due to, for example,
room size, furniture arrangements, random activities of the individual,
and absorption of walls) have a significant impact on the accuracy
of occupancy detection. In light of these uncertain factors, conven-
tional classification methods such as supervised machine learning or
fixed thresholding may not be well-suited for scenarios with unpre-
dictable variables (particularly in building environments, where room
sizes, wall arrangements, and furniture layouts may change frequently
and unpredictably). Therefore, we introduce a self-adaptive approach,
which allows WiSOM to be flexible and compatible with any variation
in the target setting.

3.3.1. Control chart approach
This method (also referred to as the Shewhart chart) is a stochastic

process control method that is commonly applied in the industrial
engineering discipline to produce products of high-quality [27]. In the
control chart technique, the time-series quantity is regarded as stable
when it stays within the control boundaries (defined by the control
limit threshold). In contrast, the quantity is regarded as an outlier
when it exceeds the control borders (or control limit). In our case, the
stable state refers to the condition where there is no occupant in the
target area, and the outlier state is the condition where an individual
is present and causing the CSI to fluctuate. However, choosing a correct
threshold for control limit to reliably identify the presence of occupant
in a random indoor environment is quite challenging. Due to the
complex and dynamic nature of indoor environments, a hard-coded
threshold may be effective in one scenario, such as a small room with
many obstacles, but not in other scenarios, e.g., a large room with
fewer obstacles. To make the control limit threshold self-adaptive to
the changes in constant varying environments, we take advantage of
the DBSCAN algorithm.

3.3.2. DBSCAN algorithm
The DBSCAN algorithm, a widely-used unsupervised machine-

learning method, finds applications in various domains, including
identifying charging zones for Electric Vehicles (EV) [51], determining
local energy businesses [52], and identifying demand response (DR)
among individual residential customers [53] etc. The default DBSCAN
algorithm [26] requires two input parameters: 𝜀 and MinPts, which
represent the center of a clusters of data points and the number of
point in the cluster, respectively. The DBSCAN requires the following
conditions to be met in order to form a cluster.

• The data point must be a core point; which means that a data
point must occupy at least MinPts in its 𝜀-neighborhood radius.
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• The core points in the cluster must be density reachable; which
means that any core point in the cluster can reach any other
core point in that cluster, demonstrating symmetry density reach-
ability. Moreover, it is also possible that any core point in the
cluster can reach any other border point in that cluster, indicating
asymmetry density reachability.

• If a data point fails to meet both of the above conditions, then it
becomes an outlier.

Because of the random environmental factors, the CSI data points
ubstantially change when the ambient environmental changes. Based
n these environmental changes the distance between CSI data points
i.e., feature value) fluctuates significantly. For instance, the distance

between CSI data points will be significantly different in a small room
compared to a large one, due to the difference in size and layout of the
rooms. As a result, different 𝜀 and MinPts values would be required to
identify the occupancy states in these two spaces. Typically, the value
of 𝜀 in DBSCAN is determined using heuristic methods, such as finding
the ‘knee’ [54] or the first ‘valley’ [26] in the k-distance graph. This
type of ‘knee’ or ‘valley’ is the point at which the target cluster is
separated from the outlier (or noise). Furthermore, MinPts value is set
equal to the dimensions of data set [54]. However, manual selection
of input parameters using this method is impractical because the ‘knee’
or ‘valley’ of CSI data points can frequently change due to variation
in the indoor environment. In order to overcome this challenge, we
have devised an approach that can automatically compute and adjust
the MinPts and 𝜀 parameters. Our auto-tuning method comprises the
ollowing stages.

uto-estimating the knee point: To determine the CSI data set’s
in arbitrary contexts, we employ the kneedle technique [30]. The

undamental goal of this method is to determine the data set’s point
hich has the maximum curvature. This approach results in identifying
knee-point, which is the point in the data set located between data

oints that experience rapid changes (outliers or dispersed core points)
nd those that experience slower changes (congested core points). In
he CSI data set, the knee-point obtained by the technique can be
sed as the bifurcation point that separates the cluster of non-occupant
ases from the cluster of occupant cases. The steps for automatically
stimating the ‘knee’ point are as follows:

1. First, the k-distance graph is transformed into negative concav-
ity. This is done by flipping it by 180◦ about the origin. The
endpoints of the flipped k-distance graph are connected so that
the data set’s overall characteristic is preserved. Furthermore,
both 𝑥 and 𝑦 axes are normalized for maintaining the original
data points trend, as depicted in Fig. 3(a).

2. The curve about the origin is rotated by 𝜃◦ in a clockwise
direction until the line connecting the ends intersects the 𝑥-axis.

3. The estimated ‘knee’ point for our CSI data points is the global
maximum, which is determined from the peak of the curve, as
depicted in Fig. 3(b).

ine-tuning of the estimated parameters: The kneedle method yields
reliable knee point estimation when both the occupancy and non-

ccupancy states have adequate CSI data points. Nevertheless, there are
wo fundamental flaws in the standard kneedle method. First, severe
ultipath effects can occur in some indoor environments, such as

mall rooms with short inter-wall distances. Such effects can mask the
ild ADL due to higher noise levels caused by multipath interference.

econd, when any of the two states, i.e., non-occupancy and occupancy,
as short duration, the coarse parameters derived by the needle method
ill merge the data points from the shortest state with the longer one.
s a result, a single cluster is generated for two distinct states. From

his, we can infer two things: first, the 𝜀 value is sufficiently large and
ll of the data points meet the MinPts condition for the core point,
6

hereby, every data point contained in the cluster is directly density
Fig. 3. (a) Flipping of the sorted data points, (b) Finding the knee point.

reachable. Second, the value of MinPts is significantly less than the
needed amount, whereby every data point becomes a core point and
directly density reachable regardless of an accurate 𝜀 value.

To handle these issues, we present a technique for fine-tuning
the input parameters (i.e., 𝜀 estimated by the kneedle method and
MinPts). First, MinPts is specified to be the same size as the number of
dimensions in the dataset as in [54]. Then, the 𝜀 parameter is iteratively
minimized whilst maximizing the MinPts until the two clusters (i.e.,
occupancy and non-occupancy) are separate. Such 𝜀 and MinPts values
that cause cluster separation are fine-tuned to classify the occupancy
and non-occupancy clusters despite extreme multipath and brief ADL
instances.

Determining the non-occupant data cluster: Fine-tuning facilitates
the identification of two separate clusters, namely, non-occupancy and
occupancy data clusters. As described in , CSI features associated with
non-occupancy data are close to 1, while those related to occupancy
data are in the range between 0.4 and 1, as illustrated in Fig. 2.
Furthermore, in contrast to the occupancy case, which is highly variable
and dispersed, the cluster produced from the non-occupancy case would
have relatively congested data points. Based on these observations,
the static cluster could be identified (that is, the one with the most
congested core points and feature values that are near 1). We obtain
the minimum feature value in the cluster using non-occupancy data and
transfer it to the control chart. The control chart leverages this control
limit threshold for differentiating between occupant and non-occupant
states in real-time.

3.3.3. Synergistic unsupervised model
WiSOM offers a self-adaptive classification approach for occupancy

detection. Thanks to the unsupervised learning, WiSOM does not re-
quire data labeling and training, and detect the occupant(s) in real-
time.

To sum up, the auto-tuned DBSCAN algorithm gathers CSI data
in batch mode and uses them to intelligently and precisely derive
thresholds from the CSI’s static clusters. This threshold is periodically
updated in the control chart method, making it robust to any unantici-
pated changes in the target environment. As long as the instantaneous
feature value of the CSI remains above this threshold in the control
chart method, the state of the AOI is regarded as non-occupant. Con-
versely, if the value of the first principal component falls below such
threshold, the state of the AOI is regarded as occupancy. By employing
this method, WiSOM effectively distinguishes between occupant and
non-occupant states based on the CSI measurements.

4. Implementation

Our testbed configuration is comprised of three device architecture:
a transmitter device that sends data, a receiver (AP) which receives the
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Table 1
Summary of experiments and data collection.
Experiment type Occupant’s activity(ies) Use of indoor

environment(s)
Duration of
each data
sample

Number of Data Samples

Impact of multipath Moderate ADL Varied spaces 30 min 150 data samples (3 scenarios)
ADL intensities Varied ADL Medium room 5 min 150 data samples (3 scenarios)
ADL instances Moderate ADL Medium room 10 min 100 data samples (2 scenarios)
Impact of temporal variations Uncontrolled ADL Medium room 120 min 40 data samples (4 scenarios)
Impact of wall losses Moderate ADL Medium room 10 min 100 data samples (4 scenarios)
Baseline Comparison Moderate ADL Varied spaces 10 min 125 data samples (5 scenarios)
data and acknowledges the reception,4 and a sniffer, which overhears
the communication between the transmitter and receiver. The transmit-
ter in our testbed setting is a MacBook Pro laptop, which pings at varied
throughput (40 ∼ 100 packets/sec) as in [55,56]. Notably, in smart
buildings there are numerous WiFi-enabled IoTs, and they consistently
exchange data with the APs. We believe that this much traffic is a
sufficient assumption.5 For the receiver, we use a couple of APs in
our setting, including ASUS-AC2900, NETGEAR-N600, and TPLINK-
AC1750 for the wireless Internet connection. They were all supporting
dual-band connections. Finally, for the traffic sniffing (i.e., pong traffic
from the AP), we use a Raspberry (RPi 3+) for capturing the CSI. The
default WLAN driver of RPi 3+ does not support the monitoring mode
and CSI extraction. To enable these features, we modify its driver by
using the open-sourced GitHub repository of Nexmon [57]. The RPi
3+ collects the CSI (OFDM modulated subcarriers) from the AP using
UDP socket 5500 (for listening). The packet received on the listen-
ing port has source and destination IP addresses as 10.10.10.10 and
255.255.255.255 (i.e., broadcasting IP), respectively. It is noteworthy
that the CSI reception on multiple streaming is also possible if the
receiving device supports MIMO However, in our case the RPi 3+ only
supported a single antenna with 2 dBi of gain. Therefore, the data was
received on a single spatial stream.

We implemented the occupancy monitoring application for both
real-time and offline modes. For the former implementation, we wrote
a Python script for occupancy monitoring, and the RPi 3+ was used
to execute it via real-time CSI sniffing. In contrast, for the latter
implementation, we transferred the CSI data to the MacBook via USB,
and then tested the CSI data set on our occupancy monitoring program.

5. Evaluation

This section describes the experimental settings and the system’s
performance. We evaluated the robustness of WiSOM in a variety of
environmental parameters, including (1) variation in indoor settings,
(2) occupant activity intensities, (3) ADL instances, (4) temporal vari-
ation in CSI, (5) occupant detection behind single, and finally (6) its
comparison with the recent baselines in real house scenario. Table 1
presents a brief overview of all our experimental setups. It includes
details such as the type of experiment, the activities performed, the size
of the environment, the duration, and the number of samples collected.
Additional information regarding specific activities and environmental
descriptions can be found in the details of the respective experiments.

5.1. Impact of multipath on WiSOM

In indoor environments, WiFi signals can encounter obstacles like
walls and furniture, giving rise to additional signal paths known as
multipath components. These multiple components, arriving at the
receiver, can cause interference and distortion, leading to undesired

4 When the AP receives the ping packet, it responds back with a pong
acket.

5 In the extended version of this paper, we would like to evaluate WiSOM ’s
performance with variable traffic.
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fluctuations in the CSI measurements. Consequently, the estimation
of CSI becomes contaminated, which can result in false positives in
occupant detection within the AOI.

Experimental Setup. To assess the robustness of WiSOM in diverse mul-
tipath indoor environments, we consider three types of rooms: small,
medium, and large with dimensions of 1.30 m × 3.15 m, 4m × 5m,
and 8m × 8m, respectively. To make our experiment more realistic, we
deliberately left the environmental conditions uncontrolled during the
data collection process. To be precise, there was no control over the
furniture arrangement, surrounding traffic (which could cause network
jitter problem [28]), and people’s motion in the vicinity of the room.
The activity performed by the occupant was moderate (i.e., walking
in the room at a normal pace of 1.4 m/s). The data was collected for
30 min each time, in which the room was empty for the initial 10 min,
and then occupied by the occupant for the latter time (i.e., 10 ∼ 30
minutes).

Performance Evaluation. Figs. 4(a) and 4(b) show the performance of
WiSOM in diverse multipath environments. The height of the bar plot
shows the median value, whereas the lower and upper parts of the
error bars represent the first and third quantiles, respectively. It is
observed that WiSOM performs relatively worse in the small room
compared to the other two rooms. This is due to the shorter inter-wall
distance of the small room and the presence of certain scatters (such
as furniture) in the target area, which further enhances the multipath
effect. As a result of the enhanced multipath effect, errors can occur
in the estimation of CSI, leading to inaccurate detection of occupants.
This is demonstrated by the error bar of the small room, in Figs. 4(a)
and 4(b) which show a higher variability for both detection rate and
false alarm rate, respectively. On the contrary, the variability in the
medium and large rooms is less severe. This indicates that the effect of
the multipath decreases with an increase in the distance between the
walls. Additionally, it is observed that the median detection rate in the
medium room is around 98% with a false alarm rate of 2.43%, and the
performance further improves in the large room, where the detection
rate is 99% with a false alarm rate of only 1%.

5.2. Impact of ADL intensities on WiSOM

In this section, we present the results of the different intensities
of Activities of Daily Living (ADL), which include activities performed
with mild, moderate, and vigorous intensity levels. We provide details
of the experimental setup and assessment procedures in the following.

Experimental Setup. To assess the robustness of WiSOM with activities of
different intensities, we considered three types of ADLs: Mild, moder-
ate, and vigorous. These three ADLs were conducted in a medium size
room (4m × 5m) for 5 min each. The mild ADL consists of an individual
wearing off a jacket and hanging it on a dressing stand and, then resting
for some time on a chair. Such mild ADL has been conducted 8 times
within 5 min. The moderate ADL consists of constant walking inside
the room at a speed of 1.5 m/s. Finally, The vigorous activity involved
the individual skipping in the room at an average rate of 3 skips/s.
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Fig. 4. Performance evaluation (a)∼(b) in diverse multipath environment, (c)∼(d) with variations of ADL intensities, and (e)∼(f) with variations of ADL instances.
We collected 50 samples for each activity from a single individual at
different times.

Performance Evaluation. The performance of WiSOM with diverse in-
tensities of ADL is shown in Figs. 4(c) and 4(d). It is noteworthy that
the mild ADL is sometimes masked by the multipath effect, therefore,
it has a slightly lower detection rate (i.e., around 93%). Similarly, the
false alarm rate of the mild ADL is notably elevated compared to the
moderate and vigorous ADL (e.g., in some cases, we observed a false
alarm rate of approximately 6.6% as depicted in the third quantile
of the error bar). With an increase in the intensity of the ADL, the
performance improves as higher intensity ADL can easily exceed the
self-adaptive threshold and can be effectively distinguished from the
no-activity cases. Notably, the detection rate for moderate activity
reaches approximately 97%, while the false alarm rate is reduced to
2.43%. For the vigorous ADL case, the detection rate is around 99%
with a false alarm rate further reduced to 1.15%.

5.3. Impact of ADL instances on WiSOM

The term ‘‘ADL instances’’ refers to the duration of time during
which the occupant engages in specific activities of daily living. In the
following sections, we discuss the experimental setup used to assess
these ADL instances and evaluate their performance.

Experimental Setup. To assess the robustness of WiSOM with variable in-
stances of ADL, we conducted the experiment in a medium-sized room
with dimensions of 4m × 5m, and the duration was set to 10 min. Two
scenarios were considered: In the first scenario, the room was occupied
for three-quarters of the experiment’s duration, which is equivalent to
7.5 min, and remained vacant for the remaining time. In the second
scenario, we reversed the scenario, where the room was vacant for
three-quarters of the experiment’s duration, and then occupied for the
remaining time. During the entire period (i.e., 10 min) for each trial,
the CSI data was continuously captured. Additionally, when the room
was occupied the participant performed the moderate ADL described in
Section 5.2.

Performance Evaluation. As evident from Fig. 4(e), Scenario 1 exhibits
a marginally lower detection rate when compared to scenario 2. The
8

reason behind this is that in scenario 1, there is a large cluster for the
occupancy state and a small cluster for the non-occupancy state. As
the control limit threshold is derived from the non-occupant cluster,
which is smaller in scenario 1 case. In contrast, in scenario 2, there
is a large amount of non-occupant data, and hence a large cluster
for non-occupancy. This allows for a more precise computation of the
control limit threshold in scenario 2. Consequently, scenario 2 slightly
outperforms scenario 1. The comparison of both scenarios in terms of
false alarm rate is illustrated in Fig. 4(f). It is clear that scenario 1
not only displays a higher median false alarm rate but also exhibits a
marginally greater degree of variability in its error bars than depicted
for scenario 2.

5.4. Impact of the temporal variations in CSI on WiSOM

Experimental Setup. To evaluate the temporal variation in the CSI mea-
surement, we evaluated WiSOM across four different scenarios. In
the first three scenarios, occupancy within the Area of Interest (AOI)
alternated between occupied and unoccupied states over specified pe-
riods. In contrast, the fourth scenario represents a situation where the
AOI remains entirely vacant, meaning there are no occupants in the
AOI throughout the entire monitoring period. To provide a specific
context, our experiment was conducted in a medium-sized room. For
each scenario, we recorded CSI data over a span of two hours (or
120 min). In the first scenario, we started with the room being un-
occupied for the first 20 min, followed by a period of occupancy for
the next 20 min. This alternating pattern of vacancy and occupancy
was continued until reaching the 120-minute mark, thereby resulting
in a total of six instances of occupancy and non-occupancy throughout
the duration. For the second scenario, we increased the period of
occupancy and non-occupancy to 40 min, and repeated the experiment
for 120 min. This ultimately resulted in a total of three instances of
occupancy and non-occupancy throughout the duration. In the third
scenario, we further increased the duration of both occupancy and non-
occupancy periods to 60 min. This led to two instances of occupancy
and non-occupancy within the 120-minute timeframe. Lastly, to assess
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Fig. 5. False Alarm Rate obtained with temporal variations in CSI.

the ability of WiSOM to withstand the time-varying fluctuations of
the CSI during non-occupant state, we conducted the fourth scenario,
where the room remained completely vacant for the entire 120 min.

During the occupancy periods, we did not regulate the Activities of
Daily Living (ADL) of the occupants. Users were free to engage in their
normal routines while inside the room. This included activities such as
reading a book while sitting on a rotating chair, walking around the
room at a normal pace, or watching TV to prevent boredom, particu-
larly in scenario 3, where the occupancy duration extended for an hour.
Additionally, in each trial of the experiment, we intentionally relocated
the rotating chair to a random position within the room. This was done
to introduce variations in the CSI data, as a new chair position could
result in different multipath reflection patterns, potentially inducing
temporal variations in the CSI measurements. In total, we conducted
10 trials (each of 120 min) for each scenario.

Performance Evaluation. We deliver the false alarm rate of the CSI
data collected for temporal variation in Fig. 5. The reason for solely
considering the false alarm rate is to place greater emphasis on the
occurrence of temporal variations, which are expected to indicate
occupant detection in the static scenario (for non-occupancy states).

Interestingly, Fig. 5 shows that WiSOM is capable of effectively
utilizing its self-adaptive feature to handle the temporal variations
observed in CSI. In the occupancy scenarios (i.e., scenario 1∼3), we
observed a slightly elevated false alarm rate in scenario 1. This increase
is likely due to the regular switching between occupied and unoccupied
states, along with the changing position of the chair within the room.
The subsequent scenarios, specifically scenarios 2 and 3, display similar
median false alarm rates. However, it is noteworthy that scenario 3
demonstrates reduced variability in its error bars compared to scenario
2. This is due to the fact that the extended period of non-occupancy
allows for the collection of more CSI data (or the cluster formed
from the static data points), enabling a more refined estimation of the
control limit threshold. Consequently, this leads to a more accurate and
intelligent distinction of the non-occupancy state. This effect becomes
even more prominent in scenario 4, which is entirely a non-occupancy
state, where we observe the false alarm rate dropping to below 1%.

5.5. Impact of wall losses on WiSOM

To thoroughly evaluate the effect of wall losses (or wall absorption
loss), we performed an experiment involving a user walking in Line-of-
9

Fig. 6. Occupant in LoS and LNoS.

Table 2
LoS and NLoS occupancy evaluation.
Occupant’s
location (Loc)

Detection rate (%) False alarm rate (%)

Loc 1 100% 0%
Loc 2 99.85% 0.45%
Loc 3 97.15% 3.1%
Loc 4 96.85% 4.75%

Sight (LoS) to the WiSOM system, followed by the user moving behind
a concrete wall with a thickness of 14 cm.

Experimental Setup. In this experimental setup, we evaluate the efficacy
of WiSOM in detecting a person in LoS as well as a person in NLoS6 as
shown in Fig. 6. We acquire 10 min of CSI data at each position (marked
by a solid black circle) during which the participant remains stationary
for half of the time and engages in moderate ADL (i.e., walking) for the
other half. At the locations 1 and 2, we collect data from the participant
with a direct LoS; where, at location 1, the the participant is in close
proximity to WiSOM , while, at location 2, the participant is located
near the AP. We repeat the same consideration for the position of the
participant with respect to the AP and WiSOM in locations 3 and 4,
respectively. However, for these two locations, the participant is in
NLoS condition.

Performance Evaluation. For this experimental setup, we observed that
the performance of WiSOM did not vary significantly when the par-
ticipant was moving in close proximity to either the WiSOM or the
AP with a direct LoS. As the presence of a PLoS between the AP and
WiSOM causes significant fluctuations in the wireless channel, which
are reflected in the magnitude of the CSI. As a result, we have achieved
higher detection rates with very low false alarm rates for detecting the
occupant at these locations, as demonstrated in Table 2.

On the contrary, for locations 3 and 4, the impact of wall absorption
is slightly more evident. Since the signal has to traverse through the
walls and back, there is a two-way signal traversal attenuation. As a
result, the signal’s strength is partially absorbed by the walls, and this
is reflected in the slightly lower performance behind the wall at both
locations 3 and 4. Based on these results, it can be inferred that WiSOM
exhibits resilience to single wall absorption in occupancy detection,
with only a marginal impact on its performance.

5.6. Comparison with related WiFi occupancy monitoring systems

In this section, we conducted a comprehensive comparison between
WiSOM and the most relevant and recent CSI-based occupancy mon-
itoring solutions. We adapted these CSI-based occupancy monitoring

6 Denoted by PLoS and PNLoS respectively in Fig. 6.



Energy 294 (2024) 130420M. Salman et al.
Fig. 7. Real-house floor plane and comparison of WiSOM with the baseline techniques.
solutions to our specific real-house scenario shown in Fig. 7(a) and eval-
uated their performance. The selected scenario encompasses occupancy
in both LoS and NLoS conditions, variable room sizes, and uncontrolled
furniture arrangement. In the following, we provide a brief introduction
to these systems and present a performance comparison with WiSOM .

Covid-Safe. The Covid-Safe [58] is intended for occupancy monitoring
in epidemics such as COVID-19. It utilizes statistical features derived
from CSI amplitude, such as mean, minimum value, maximum value,
entropy, skewness, Median Absolute Difference (MAD), and standard
deviations. These features are fed into a Support Vector Machine (SVM)
classifier, which processes the data and makes predictions about the
occupancy status.

DeepDeSpy. DeepDeSpy [59] is a solution designed to mitigate privacy
invasion by focusing on the identification of occupants within a specific
area. Its primary purpose is to detect the presence of individuals (or
occupants) and subsequently predict the likelihood of a spy camera
being present. They have developed a deep learning model consisting
of a combination of a convolutional neural network (CNN) and a
bidirectional long short-term memory (BiLSTM) network. The CNN is
responsible for efficient and automatic feature learning, while the BiL-
STM processes the CSI data in both backward and forward directions.
This combination enables the detection of occupants in the AOI.

Experimental Setup. In this experimental setup, we conducted an
in-the-wild study to assess the effectiveness of occupancy detectors
in detecting a person located in different portions of a house. To
accomplish this, we utilize a real-life house setting comprising five
rooms, each with varying dimensions, as depicted in Fig. 7(a). The
interior walls shown with blue line color represent drywall, while
those in green color indicate single-brick walls (7.6 cm thick). The
surrounding exterior walls represented by black color lines are concrete
walls whose thickness is about 15.2 cm. The CSI data is collected for
10 min at each position, during which the user remains stationary for
the first 5 min. Except for location 3, the user walks in a circular
fashion for the last 5 min at all other positions. As the restroom, at
location 3, offered limited space, we modified the walking pattern to
back and forth motion instead of circular. The placement of the AP
and occupancy detector was deliberately chosen at position 5 and 1,
respectively, as their locations can be interchanged with other positions
(such as WiSOM at position 2 or 3) without any significant effect on the
results. Moreover, they were situated in different rooms to assess the
impact of walls on their performance.

Performance Evaluation. In light of the above experimental settings, we
conducted a comprehensive evaluation of every section of the house,
including those with single or multiple walls away from the occupancy
detectors, to assess their effectiveness in detecting the occupant.

As evident in Fig. 7(b), the superior performance of all occupancy
detectors in detecting occupancy at locations (hereafter Loc.) 1 and
5 can be attributed to the presence of Line-of-Sight (LoS) conditions
between the user and the detectors, and between the user and the AP,
10
respectively. Such a condition allows the CSI to capture the resulting
channel changes and utilize them for motion detection, leading to
higher detection rates and lower false alarm rates. With a meticulous
examination at the specified locations (i.e., Loc. 1 and 5), WiSOM
demonstrates a slight performance improvement compared to both
Covid-Safe and DeepDeSpy, achieving a detection rate as high as 99.2%
at Loc. 1, along with a mere 1.2% false alarm rate. Loc. 2 and 4
are both in Non-Line-of-Sight (NLoS) to the detectors, with Loc. 2
being close to the detectors and Loc. 4 being close to the Access Point
(AP). However, in comparison to Location 4, the improved detection
of occupancy at Loc. 2 can be attributed to two factors. Firstly, the
room is in close proximity to the detectors. Secondly, the wall that
separates rooms 1 and 2 is made of drywall, which exhibits a low
absorption loss of 0.3 dB at 2.4 GHz, in contrast to the concrete walls
that offer a higher absorption loss of 13.6 dB [60]. Similarly, Loc.
4, although situated farther from the detector, benefits from its close
proximity to the AP. The CSI traveling from the AP to the detectors
is influenced by the occupant’s presence at Loc. 4, which is separated
from Location 5 by a drywall. At both locations 2 and 4, WiSOM
exhibits superior performance compared to its counterparts. Specifi-
cally, at Loc. 2, WiSOM achieves a detection rate that is 5.6% and
8.9% higher than Covid-Safe and DeepDeSpy, respectively. Similarly, at
Loc. 4, WiSOM achieves a detection rate that is 10.7% and 6% higher
than Covid-Safe and DeepDeSpy, respectively. At Loc. 3, the detectors’
performance is adversely affected by three main factors. Firstly, the
walls are made of bricks, causing higher absorption losses (6.45 dB
of absorption loss [60]) compared to the drywall in previous cases.
Secondly, the inter-wall distance is very short, leading to more severe
multipath effects. Thirdly, the occupant at Loc. 3 is positioned behind
multiple walls from the detector, further contributing to the decreased
performance. Despite these challenging factors, WiSOM continued to
outperform both Covid-Safe and DeepDeSpy, achieving a 19.2% and
21.5% higher detection rate (along with a lower false alarm rate).

6. Discussion and Future Work

We have evaluated the performance of WiSOM in diverse scenarios
considering realistic factors such as room sizes, intensities of ADLs, du-
ration of occupancy, temporal variations, and wall absorption. Overall,
the results demonstrate the effectiveness of WiSOM for distinguishing
occupancy and non-occupancy conditions with higher precision. It is
noteworthy that the current work primarily focuses on evaluating the
feasibility of occupancy detection using commodity WiFi devices. In our
future research, we plan to explore the correlation between occupancy
and energy consumption in a building. We would also like to acknowl-
edge that there may be additional factors that need to be considered
for specific environments and applications. Such factors are described
below to identify potential directions for further improvement in future
works.

Interference from the outdoor individuals: In this paper, we have
focused on detecting the occupancy of users behind walls. However, a
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careful reader may raise a concern about the possibility of detecting
movements outside the AOI. We address this concern by noting that
the exterior walls of buildings are typically made of concrete or bricks,
which offer significant signal attenuation due to penetration losses.
Therefore, any fluctuations caused by an outside user’s movements
would likely be minimal. However, in cases where the exterior walls
are thin or outside users engage in vigorous activity, contamination
of the CSI may occur. We plan to address this issue in detail in our
future work and explore effective ways to mitigate the potential effects
of outside individuals.

Number of occupants in an indoor environment: In our presented
scenarios, we focused on the results for a single target individual. This
was done in order to consider the worst-case scenario, as detecting
the activity of a single occupant is generally more challenging com-
pared to multiple users [58]. When multiple users are present, their
combined activities cause greater changes in the CSI, making it easier
to distinguish from non-occupant cases. However, since the number
of occupants in an indoor environment can vary, with the average
household size ranging from 2.3 to 5.5 individuals per household
according to the literature [61,62], we plan to explore the impact of
multiple users in our future work.

Impact of varied traffic sources: In the current setting, we generated a
sufficient number of packets per second (40 ∼ 100 packets/s) to ensure
that our packet sniffing frequency was high enough to effectively moni-
tor activity in the AOI. This is a realistic traffic rate in housing scenarios
where WiFi-enabled IoT devices are consistently exchanging data with
the internet [55,56]. However, it is also possible that in some houses,
there are fewer WiFi-enabled IoT devices installed, which would result
in lower traffic rates. In the future, we would like to evaluate the impact
of these lower traffic rates on WiSOM ’s performance, such as rates
below 40 packets/s.

Presence of extraneous movements: There may be instances of ex-
traneous movements in the AOI, such as the movement of curtains,
pendulums, toys, and other similar objects, which could lead to tem-
poral variation in CSI due to some non-human factors. However, these
are typically micromovements and would likely result in minimal false
positives. In our future work, we also plan to investigate ways to
differentiate between extraneous movements and actual occupancy
movements.

Fully dynamic ADL: In the evaluation of ADL with dynamic instances,
we did not consider a scenario where the ADL is fully dynamic, as
WiSOM requires a minimum static duration to update the online thresh-
old. However, it is unlikely to have a fully dynamic scenario where a
person is consistently moving without stopping. In such cases, we use
a default static threshold value to handle the situation. This default
threshold is then updated to a quasi-optimal value whenWiSOM detects
a sedentary behavior from the user (i.e., activity lasting for at least 2 s).

7. Conclusion

In this work, we propose a self-adaptive system that utilizes off-the-
shelf WiFi for occupancy monitoring in smart buildings. The system
aims to address the issue of energy wastage by optimizing energy
consumption based on occupancy detection. WiSOM does not require
data labeling or pre-training and works robustly in real-time. Further-
more, WiSOM is robust to the complex variations found in indoor
environments, such as variations in space size, ADLs with different
intensities and instances, temporal variation in the CSI, and the impact
of wall absorption. In various indoor settings, WiSOM demonstrated
a high average detection rate of 98.25%. It also performed well with
diverse ADL intensities and instances, achieving a detection rate of
96.5% and 98.1%, respectively. Additionally, the system was tested
in both lab and real-home environments to assess the impact of wall
losses. In NLoS scenarios, the average accuracy was 97%, which was
11
2.9% lower than in LoS scenarios. WiSOM was also robust to temporal
ariations in CSI, with a false alarm rate of less than 2%. In real-house
cenarios with varying room dimensions, NLoS conditions, and wall
cclusions, WiSOM demonstrated a performance gain of up to 21%
ompared to recent CSI-based occupancy detection systems.

We acknowledge certain limitations in our current system. The
eliance on WiFi signals renders our system susceptible to extrane-
us movements, particularly if walls are constructed from less dense
aterials like wood or plaster. This could result in the detection of

xternal movements, potentially leading to higher false motion detec-
ion. Furthermore, in some rare cases, WiSOM might not be able to
djust its threshold appropriately, for instance, in areas with constant
ovement. In such a case, it depends on a pre-trained motion detection

hreshold, which can occasionally lead to false results. External factors
ike varied traffic sources and extraneous motion can also impact
etection accuracy. These limitations are detailed in Section 6, and
ddressing them will be a focus of our future work.
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